AQUACULTURE STRUCTURES
CURRENT DEVELOPMENT TRENDS

IMAM 2017 – LISBON, PORTUGAL

Vegard Aksnes, PhD
Research Manager, SINTEF Ocean
Member of Board, Blue Revolution Centre
vegard.aksnes@sintef.no

Source: Salmar
Outline

• Introduction to fish farming
• Salmon farming in Norway
• Aquaculture structures in exposed areas
• Closed cage aquaculture
• Future prospects
Outline

- Introduction to fish farming
- Salmon farming in Norway
- Aquaculture structures in exposed areas
- Closed cage aquaculture
- Future prospects
World population increases

Source: UN Population division, «World population prospects, The 2012 revision»
Food gap challenge towards 2050

69% increase in food production needed

- Change in diets
- Population growth

UN’s sustainable development goals
World capture fisheries and aquaculture production

Source: FAO (2016), «The State of World Fisheries and Aquaculture»
Aquaculture – Which species?

Atlantic salmon production

Outline

• Introduction to fish farming
• **Salmon farming in Norway**
• Aquaculture structures in exposed areas
• Closed cage aquaculture
• Future prospects
Production cycle of Atlantic Salmon

1. Spawn
2. Brood – Parr - Smolt
3. Transfer to sea
4. Growth phase in sea
5. Slaughtering
6. Processing

Production cycle of Atlantic Salmon

1. Spawn
2. Brood – Parr - Smolt
3. Transfer to sea
4. Growth phase in sea
5. Slaughtering
6. Processing

The largest/best salmon sites in Norway

Present Norwegian fish-farms
15 000 metric tonnes salmon per cycle
10 – 16 cages Ø 50 meter
40,000 m³ volume per cage and max. 200 000 fish per cage
1 000-1 500 metric tonnes/man year
Exposed but not offshore/open ocean

Photo: SINTEF/ACE
Modern fish farming
Norwegian aquaculture and sustainable growth

Challenges:
- Diseases and parasites
- Use of coastal areas
- Feed and feed resources
- Escaped fish/genetic interaction
- Pollution and discharges

Consequence:
- No new ordinary licenses
Development licenses

• Political ambitions of growth

• Development licenses (from November 2015) - for development of new technology which contributes to:
 • solving environmental challenges
 • improving the utilization of the coastal zone

• Free licenses for up to 15 years, can be converted to commercial licenses

• Huge interest – innovation boost in the industry

• Low oil price – transfer of knowledge
A very special period with a rare innovation rate

- Development licenses, low oil prices and high salmon prices leads to investments and a high innovation rate
- Both closed, semi-closed and open systems under development
- Two main trends:
 - Structures for exposed locations
 - Closed cage farming
Outline

• Introduction to fish farming
• Salmon farming in Norway
• Aquaculture structures in exposed areas
• Closed cage aquaculture
• Future prospects
Why farm at exposed coastal areas?

There has been a gradual move towards using more exposed coastal areas

- Need for more space and less area conflicts
- Improved production environment with stable conditions and greater dispersal of wastes
- Located at a greater distance to wild salmonids in coastal waters
Challenges

• Much more expensive than traditional structures
• Need to perform a more thorough design process
• Current standards and regulations do not fit new concepts
 • New Norwegian standard for fish farms under development
• Description of marine environment
 • Not offshore (yet)
 • Waves and current in coastal regions
• Fish welfare
Outline

• Introduction to fish farming
• Salmon farming in Norway
• Aquaculture structures in exposed areas
• **Closed cage aquaculture**
• Future prospects
Closed cage aquaculture

• Improve fish health and welfare (avoid sea-lice)
• Reduce emissions to the environment
• Reduce impact on wild salmon
• Can be grouped into rigid, semi-rigid and flexible structures
• Traditional grid moorings often used
• Intended for less exposed locations
From a marine technological perspective

• Less explored type of structure
• Two important properties (compared to net cages):
 1. Large mass
 2. Enclosed volume of water with free surface
Sloshing

• Resonant motion of contained water
• Coupled with global cage motions
• Can cause large structural loads
• Local structural loads (fatigue)
• Natural frequencies depend on cage dimensions
Effect of enclosed water on cage response

- Tests with and without water in the cage
- Dry weights corresponding to weight of water

Dimensions:
- Diameter $D=1.5$ m
- Draught $h = 0.375$ m
- $h/D = 0.25$
Surge response

- Large effect of the enclosed water
- Cancellation of motion at the dry models resonance period
- Amplification of the response at lower periods
- Important for design of mooring system
- Sloshing must be accounted for
Challenges

• **Structure:**
 - Large volume structure (diffraction effects matter)
 - Large displacement (inertia forces)
 - Sloshing
 - Traditional grid moorings often used

• **Systems:**
 - Water exchange system (critical component)
 - Power system (pumps and feeding)
 - Additional oxygenation needed
 - Waste removal (and storage)

• Fish welfare
Outline

• Introduction to fish farming
• Salmon farming in Norway
• Aquaculture structures in exposed areas
• Closed cage aquaculture
• Future prospects
Future prospects

• New times for the fish farming industry
• What will happen with the development licenses?
• Will today's structures survive in the future?
• Fundamental shifts
• Technology meets biology!

• Many exciting multidisciplinary challenges to be solved!
Technology for a better society